
Near Protocol Randomness Beacon

Alex Skidanov
Near Protocol

7/AlexSkidanov
alex@nearprotocol.com

August 2019

Abstract

We present a randomness beacon scheme that is unpredictable and
unbiasable for as long as more than 1/3 of participants follow the proto-
col, is live for as long as 2/3 of participants follow the protocol, doesn’t
depend on verifiable delay functions and doesn’t require distributed key
generation. The disadvantage of the approach is O(n3) network overhead.

1 Introduction and Related Work

This short document presents the algorithm Near Protocol uses for the random-
ness beacon.

Distributed randomness beacon is a construction that allows n participants
continuously create random numbers with the following properties:

1. Unpredictable. No participant should be able to predict the resulting
number or reason about any properties of it before the number is created.

2. Unbiasable. No participant should be able to influence the resulting
number in any way.

We also want the algorithm to tolerate some percentage of malicious actors
that are either offline or intentionally deviate from the protocol. We differen-
tiate between the number of malicious actors that need to cooperate to stall
the algorithm and the number of malicious actors that is needed to make the
algorithm predictable or biasable.

There are multiple approaches to distributed randomness beacon that are
being implemented in blockchain projects.
RANDAO + VDFs. Ethereum Serenity plans to use RANDAO, the output
of which is then fed to a verifiable delay function, output of which is the gen-
erated random number. This approach has a very desirable property that it
remains live, unbiasable and unpredictable for as long as there are at least two
honest actors. Recent advances in VDFs ([1], [2]) make this approach feasible in

1



practice. However it is extremely hard to configure the VDF and the algorithm
in such a way that it finishes in meaningful time on conventional hardware, but
the adversary with a specialized ASIC doesn’t compromise the unpredictability
of the algorithm.
Threshold Signatures. Dfinity [3], at its core, relies on a randomness beacon
based on DKG-friendly Threshold Signatures. While can be configured differ-
ently, one possible configuration provides liveness for as long as more than 2/3 of
the participants are online and follow the protocol, and remains unbiasable and
unpredictable for as long as more than 1/3 participants are online and follow
the protocol.

The disadvantage of this approach is the necessity to perform a very complex
distributed key generation (DKG) step. DKG is an active area of research,
and while there were multiple breakthroughs in the recent years, it remains an
extremely complex task.
RandShare and RandHound. RandShare and RandHound are two random-
ness beacon schemes presented in [4]. RandShare requires more than 2/3 honest
participants for both liveness and to remain unbiasable and unpredictable, which
is worse than the 1/3 threshold for unpredictability that threshold signatures
provide. It also has O(n3) network overhead.

RandHound is a more complex version that reduces the network overhead.
In this paper we present a very simple approach that has the same thresholds

for liveness and to remain unbiasable and unpredictable as Threshold Signatures,
but doesn’t require DKG. It does impose O(n3) network overhead, which is
undesirable, however only O(n2) messages are sent (each of which is O(n) long)
as opposed to O(n3) constant sized messages in RandShare.

2 Construction

Let n be the total number of participants, and k be b2n/3c+ 1.
We assume the existence of a public key cryptography scheme such that

1. It’s deterministic, i.e. if one participant encrypted a message m with
a public key pk and obtained the result em, then any participant that
encrypted m with pk obtains em.

2. It’s verifiable, i.e. if a participant that has access to a private key sk was
given a message that was claimed to be encoded with pk, they can either
decrypt it and get some message m that is, when encrypted with pk again,
results in em, or can prove that no such message m exists.

We discuss a suitable scheme in section 4.
Each random number is generated in five steps:

Commitment. Each participant j generates (using a local source of random-
ness) a random vector rj of size k where each element is a 256 bit random
numbers, computes an (n, k) erasure code of rj resulting in a vector sj of size n
with n shares such that any k shares are sufficient to reconstruct rj , and encodes

2



each share sj,i with the public key of participant i to get a vector ej of size n.
They then broadcast ej . Since each share in ej is encoded with a public key of
different participant, it is impossible to recover rj unless k participants collude
and share their decoded shares.
Consensus. Participants collectively use any byzantine fault tolerant consen-
sus, for example Tendermint [5], to reach a consensus on exactly k published
vectors e. Say the vectors on which the consensus was reached were published
by participants {z1, z2, z3...zk}
Reveal. Each participant i for each j ∈ 1..k decrypts ezj ,i and either publishes
the decrypted szj ,i or a proof that ezj ,i cannot be decrypted. Assuming no more
than n − k participants are offline or otherwise not following the protocol, at
some point for each vector ezj at least k such decrypted szi , i elements (or proofs
of impossibility to decrypt them) will be published.
Recovery. Once for each vector ezj at least k elements were decrypted or proven
non-decryptable, each participant locally performs the following for each such
vector:

1. If for at least one element a proof that such element cannot be decrypted
is provided, the vector is discarded;

2. Otherwise, we have at least k elements of szj , which is sufficient to recon-
struct rzj . If the reconstruction fails, the vector is discarded;

3. Otherwise, once rzj is reconstructed, we recompute the erasure code s′zj ,
and then encrypt each element i of s′zj with the public key of participant
i to compute e′zj . If ezj 6= e′zj , the vector is discarded;

4. Otherwise, rzj is kept.

Computing output. The final output is the XOR of all the kept rzj .

3 Analysis

Theorem 1 (Liveness). For as long as at least k participants are online and
follow the protocol, the protocol will terminate assuming partially synchronous
network.

Proof. For this proof we assume that the consensus in the second step is Ten-
dermint, though it naturally applies to many other consensus algorithms. Since
at least k participants are online and follow the protocol, there will be a mo-
ment when at least k vectors ej are published. Starting with the next round in
Tendermint any honest leader will be able to propose a set of k of those vectors.
Since Tendermint is live under partially synchronous network, a consensus on
some subset of k vectors will be reached in finite time.

Once the consensus is reached, since at least k participants are online and
follow the protocol, there will be a moment in time when each participant ob-
serves at least k revealed elements szj ,i for each j, and thus would move to the

3



recovery step. Both the recovery and computing output steps are performed
offline and do not require further communication.

Lemma 1. During the recovery phase for any j ∈ 1..k either all the honest
participants will discard vector ezj , or all the honest participants will successfully
reconstruct and keep rzj

Proof. It is sufficient to prove that if at least one honest participant recovered
rzj and kept it, then all the honest participants will recover rzj and will keep it.

Indeed, if a honest participant successfully recovered and kept rzj that means
that their locally recomputed e′zj matched the published and agreed upon ezj ,
but that means that each element ezj ,i can be decrypted, and corresponds to
the correct share szj ,i, and thus all the shares were successfully decrypted by all
honest participants, and each honest participant successfully reconstructed rzj ,i
and (assuming the erasure code is deterministic) obtained matching e′zj ,i.

Theorem 2 (Safety). Once the protocol terminates, all the participants will
agree on the produced output.

Proof. Assuming the consensus protocol used in consensus phase is safe, all the
participants agreed on the same set z1, z2...zk. According to lemma 1, all the
participants then kept the same subset of the published vectors. Since the final
output is a deterministic function of such vectors, all the participants obtained
the same output.

Theorem 3. For as long as less than k participants are malicious and cooperate,
the protocol is unbiasable and unpredictable.

Proof. The resulting number is determined once the consensus phase is over.
After that the malicious actors can only stall the protocol, but cannot influence
the number in any way, since once the vector z is agreed upon, all the par-
ticipants are guaranteed to keep the same set of rj and will observe the same
output.

Since less than k participants are malicious and cooperate, at least one of
the agreed upon zj corresponds to an honest participant. Similarly, since less
than k actors cooperate, they can’t have access to k shares of szj , thus they
cannot recover rzj of any honest participant, and cannot reason about its value.
Therefore, until the reveal phase starts, the malicious actors have no way to
learn the value of rzj of at least one honest actor, and thus have no insight into
the value of the resulting output.

The protocol is unpredictable because the moment when the number is deter-
mined (end of consensus phase) is before the first moment when any participant
gets any insight into the resulting generated number (the beginning of the reveal
phase).

The protocol is unbiasable because the last moment when any participant
has any influence on the number (the commitment and consensus phases) is
before the first moment when any participant gets any insight into the resulting
generated number (the beginning of the reveal phase).

4



4 Public Key Cryptography Scheme

The algorithm described in section 2 relies on public key cryptography scheme
that is determenistic and veriable.

At the core of the scheme we use ElGamal [6] encryption scheme. How-
ever, ElGamal is not determenistic, specifically it uses an ephemeral randomly
generated key as one of the encryption steps. It is not determenistic by de-
sign, because in most practical applications of ElGamal it must be impossible
to brute-force the input. In the application to the randomness beacon described
above it is not a concern, since the input to the encryption is a random 256 bit
number, and thus cannot be brute-forced. We make ElGamal determenistic by
changing the derivation of the ephemeral key be a determenistic function of the
input.

Assuming cyclic group G with the generator G, secret key x and public key
P = xG, and some M which is an element of G , the encrypted M is computed
as:

k = hashToScalar(M)

C1 = kG

C2 = M + kP

out = (C1, C2)

where k is the ephemeral secret key and C1 is the ephemeral public key.
Once (C1, C2) is received, the message can be decrypted as

M = C2 − xC1

Indeed,
C2 − xC1 = (M + kP )− xkG = M + xkG− xkG = M

This algorithm is determenistic, in a sense that the same message encrypted
with the same public key will always result in the same encrypted message.
However, it is not verifiable under the definition that we provided in section
2. Specifically, if a malicious actor used a different value of k when encoding a
message M and then distributed resulting (C1, C2), then once the message M
is decrypted and re-encrypted following the protocol, a different pair (C ′

1, C
′
2)

will be obtained.
We want the participant that has access to the secret key x in this situation to

be able to prove that the published pair (C1, C2) was not obtained by following
the protocol. We will do that by publishing a proof that consists of M such
that when encrypted following the protocol doesn’t result in (C1, C2), the value
S = xC1, and a cryptographic proof that the participant knows value x such
that when multiplied by C1 results in published S without revealing x.

To prove that there’s such x that xC1 = S without revealing x we can prove
instead that

5



dlog(S,C1) = dlog(P,G)

Proof systems for such statements about discrete logarithms is a well-researched
area, for example see [7]. Specifically, we can proof the statement above in the
following way:

r = randomScalar()

R1, R2 = rC1, rG

e = hashToScalar(R1, R2)

s = r + xe

out = (R1, R2, s)

Now everyone can verify that dlog(S,C1) = dlog(P,G) by recomputing e
from (R1, R2) and then verifying that:

sC1 = R1 + eS

sG = R2 + eP

With all this instrumentation a full proof that the message M was not en-
crypted properly consists of:

(M,xC1, R1, R2, s)

5 Conclusion

We presented a simple randomness beacon design that can tolerate less than
1/3 of malicious actors for liveness, and less than 2/3 of malicious actors to
remain ubiasable and unpredictable, with O(n3) network overhead. The proto-
col doesn’t depend on any complex cryptographic primitives such as distributed
key generation or verifiable delay functions.

This makes the protocol applicable in practical settings in which the cubic
network overhead is acceptable, but the desired threshold to remain ubiasable
is high.

6 Acknowledgements

Thanks to Daniel Robinson for major contributions to section 4.

References

[1] Benjamin Wesolowski. Efficient verifiable delay functions. 11478:379–407,
2019.

6



[2] Krzysztof Pietrzak. Simple verifiable delay functions. Cryptology ePrint
Archive, Report 2018/627, 2018. https://eprint.iacr.org/2018/627.

[3] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY tech-
nology overview series, consensus system. CoRR, abs/1805.04548, 2018.

[4] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly,
Linus Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable
bias-resistant distributed randomness. Cryptology ePrint Archive, Report
2016/1067, 2016. https://eprint.iacr.org/2016/1067.

[5] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT
consensus. CoRR, abs/1807.04938, 2018.

[6] Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Proceedings of CRYPTO 84 on Advances in Cryp-
tology, pages 10–18, New York, NY, USA, 1985. Springer-Verlag New York,
Inc.

[7] Jan Camenisch and Markus Stadler. Proof systems for general statements
about discrete logarithms. Technical report, 1997.

7


